Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 914: 169784, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38181945

RESUMEN

Dissolved sulfide in sediment porewater significantly influences aquatic ecosystems. Conventionally, sulfide determination in sediment porewater relies on ex-situ analytical methods, susceptible to measurement errors due to sulfide oxidation and volatilization during sample analysis. In this study, we introduced an innovative in-situ method for assessing dissolved sulfide in surface sediment porewater, leveraging the integration of diffusive gradients in thin films (DGT) with digital imaging. The DGT device effectively concentrates sulfide in sediment porewater, inducing observable color changes in the binding gel. Recordings of these changes, captured by imaging equipment, facilitated the establishment of calibration curves correlating grayscale value alterations in the binding gel to sulfide concentrations. Under optimal conditions, the developed method demonstrated a linear detection range of 3.0-200 µmol L-1 at 20 °C, particularly when the exposure time exceeded 180 min. The developed method is insensitive to salinity and suitable for measuring sulfide concentrations in various natural water environments. Compared to traditional ex-situ methods, our approach circumvents challenges linked to intricate pre-treatment, prolonged analysis duration, and significant systemic errors. This proposed method presents a real-time solution for sulfide concentration assessment in surface sediment porewater, empowering researchers with an efficient means to monitor and study dynamic sulfide levels.

2.
Water Res ; 238: 120009, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37146400

RESUMEN

Although polyhalogenated carbazoles (PHCZs) have been widely detected in the marine environment, their origin is far from clear. In this study, the formation of PHCZs in the chlorination of seawater containing carbazole and its derivatives was investigated. A total of 14 PHCZs including six commonly found and eight unknown congeners were identified in the chlorination of seawater with carbazole. In addition, this study for the first time demonstrated the production of common PHCZs from the chlorination of seawater with 3-methyl carbazole and 3-formyl carbazole, especially 1,8-dibromo-3,6-dichlorocarbazole from 3-methyl carbazole. The formation of PHCZs in the reaction resulted from the halogenation of carbazole by reactive chlorine species (RCS) and mainly reactive bromine species (RBS), forming from the oxidation of bromide by RCS. Results also indicated that the reaction followed a successive halogenation pattern. A higher content of free chlorine and bromide facilitated the generation of RBS, while a higher concentration of DOC exhibited an inhibitory effect. The effects of free chlorine, bromide, DOC, and temperature on the formation of PHCZs were congener-specific. Given the widespread use of chlorination in seawater disinfection, seawater chlorination might be a potential source of PHCZs in the marine environment.


Asunto(s)
Halogenación , Contaminantes Químicos del Agua , Bromuros , Cloro , Contaminantes Químicos del Agua/análisis , Agua de Mar , Desinfección , Carbazoles/análisis
3.
Environ Sci Technol ; 57(16): 6673-6681, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37053377

RESUMEN

Polyhalogenated carbazoles (PHCZs) have been increasingly detected in the environment as a result of anthropogenic and natural origin. However, it is unclear how PHCZs are naturally produced. In this study, the formation of PHCZs from bromoperoxidase (BPO)-mediated halogenation of carbazole was investigated. A total of six PHCZs were identified in reactions under different incubation conditions. The presence of Br- significantly influenced the formation of PHCZs. The products were first dominated by 3-bromocarbazole and then 3,6-dibromocarbazole as the reactions proceeded. Both bromo- and chlorocarbazoles were identified in the incubations with trace Br-, suggesting the co-occurrence of BPO-catalyzed bromination and chlorination. However, BPO-catalyzed chlorination of carbazole was much weaker than that of bromination. The formation of PHCZs could be attributable to the halogenation of carbazole by reactive halogen species generated from BPO-catalyzed oxidation of Br- and Cl- by H2O2. The halogenation was found to follow a successive substitution order of C-3, C-6, and C-1 on the carbazole ring, forming 3-, 3,6-, and 1,3,6-isomers. Similar to the incubation experiments, six PHCZs were for the first time detected in red algal samples collected from the South China Sea, China, suggesting the biogenesis of PHCZs in marine red algae. Given the widespread distribution of red algae in the marine environment, BPO-catalyzed halogenation of carbazole may be a natural origin for PHCZs.


Asunto(s)
Peróxido de Hidrógeno , Rhodophyta , Halogenación , Carbazoles
4.
Sci Total Environ ; 880: 163281, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37023803

RESUMEN

Ammonium (NH4+) is an important parameter for aquatic ecosystems. To date, continuous and underway acquisition of NH4+ in coastal and estuarine waters has been challenged by the strongly varying salinity and complex matrices in these waters. To address these issues, a hollow fiber membrane contactor (HFMC) was constructed and incorporated in flow injection analysis (FIA) to achieve online separation/preconcentration of NH4+ in water. In the FIA-HFMC system, NH4+ in the water sample was converted into NH3 under alkaline conditions in the donor channel. The generated NH3 diffused across the membrane and was absorbed in an acid solution in the acceptor channel. The resultant NH4+ in the acceptor was then quantified based on a modified indophenol blue (IPB) method. Parameters affecting the performance of the FIA-HFMC-IPB system were evaluated and optimized. Under the optimized conditions, the proposed system exhibited a limit of detection of 0.11 µmol L-1, with relative standard deviations of 1.0-1.9 % (n = 7), and a good linear response (R2 = 0.9989) for the calibration in the field with NH4+ standards in the range of 0.40-80 µmol L-1. The proposed system was applied to a shipboard underway measurement of NH4+ in a two-day cruise in the Jiulong River Estuary-Xiamen Bay, China. A good agreement was observed between measurements from the proposed system and those from manual sampling and laboratory analysis. Both laboratory and field results demonstrated that the system was free of salinity effect and interference from organic nitrogen compounds. The system also showed excellent stability and reliability during a 16-day observation. This work suggests that the proposed FIA-HFMC-IPB system is applicable for the underway measurement of NH4+ in water, especially for estuarine and coastal waters with varying salinity and complex matrices.

5.
Environ Pollut ; 319: 120957, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36596377

RESUMEN

Polyhalogenated carbazoles (PHCZs) have been increasingly detected in marine sediment, raising concerns in recent years. In this study, sediment samples (42 surface and one core) were collected from the Yangtze River estuary and the adjacent East China Sea, and eleven PHCZs and unsubstituted carbazole were measured. The total concentration of PHCZs in surface sediments ranged from 0.19 to 2.49 ng/g dry weight (d.w.) (median 1.03 ng/g d. w.). The congener compositions of PHCZs in the surface sediment were dominated by 3,6-dichlorocarbazole (36-CCZ, 53.2%), followed by 3-chlorocarbazole (14.9%) and 3,6-dibromocarbazole (36-BCZ, 11.8%). Carbazole in the surface sediment ranged from not detected to 9.89 ng/g (median 1.25 ng/g), with a detection frequency of 81.0%. The spatial distribution of 36-CCZ in surface sediments exhibited a clear decline from the coast to offshore, while 36-BCZ showed the opposite trend. The depth profile of 36-CCZ was maintained at a relatively low and stable concentration (about 0.36 ng/g) in core segments from 1903 to 1951, followed by a steady increase to 1.5 ng/g in 2006. This increase coincides with the industrial and agricultural development in China that began in the 1950s. In contrast, the other detected PHCZs and carbazole maintained stable, low concentrations over time. These spatial and temporal patterns suggest that 36-CCZ in this area is predominantly from anthropogenic sources, while 36-BCZ has a natural origin. Toxic equivalent estimations indicated that dioxin-like effects for the observed PHCZs were low. These results provide useful information for understanding the origin of PHCZs and carbazole in this area.


Asunto(s)
Ríos , Contaminantes Químicos del Agua , Estuarios , Contaminantes Químicos del Agua/análisis , Sedimentos Geológicos , Carbazoles , China , Monitoreo del Ambiente
6.
Sci Total Environ ; 863: 160919, 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36529398

RESUMEN

Reliable high-resolution data is essential for understanding the aquatic sulfur biogeochemical processes. However, the accurate quantification of total dissolved sulfide (TDS) remains challenging due to its low concentration and vulnerability to oxidation. Furthermore, the frequency and the spatial coverage of TDS measurements are constrained by the cost of the laboratory analysis. In this study, an automated portable system was developed for on-site real-time measurement of trace TDS in natural waters. This system was based on the classic methylene blue (MB) spectrophotometric assay combined with on-line solid phase extraction (SPE) and flow injection analysis (FIA). A commercially available weak-cation-exchange cartridge was used as the SPE sorbent. Experimental parameters affecting the performance of the proposed system were optimized. Under the optimized conditions, linear calibration range of 0.02-2.50 µmol L-1 was obtained with a sample loading volume of 5.0 mL and a sample throughput of 12 h-1. The limit of detection could be lowered to 0.003 µmol L-1 by pre-concentrating 10.0 mL sample. The precision, determined as the relative standard deviation (RSD), was <2.75 % (n = 11) and the recoveries from spiked samples ranged from 54.4 % to 97.5 % with RSDs of 1.1-2.3 % (n = 3). Furthermore, the FIA-SPE-MB system was successfully deployed in the Taihu Lake for continuous 48 h monitoring of variations in TDS, demonstrating the applicability of this system for on-site TDS measurement in natural waters.

7.
Huan Jing Ke Xue ; 43(11): 4835-4844, 2022 Nov 08.
Artículo en Chino | MEDLINE | ID: mdl-36437056

RESUMEN

Sulfide in natural waters is highly toxic to aquatic organisms. The occurrence of sulfide in natural waters is closely related to water quality and the biogeochemical processes of many other elements because of the labile chemical properties of sulfide. Therefore, it is very important to obtain real and timely concentrations of sulfide in natural waters. In fact, the determination of sulfide in natural waters has long been a hot issue in the field of environmental monitoring. Researchers have developed various analytical methods, mainly based on spectrophotometry, fluorescence spectroscopy, chemiluminescence, electrochemistry, chromatography, and flow-based techniques. In addition, substantial progress has been made in the aspect of automation and intelligence. This review systematically summarized the state-of-the-art progress on the determination of sulfide in natural waters, including sample collection and pretreatment, laboratory analysis, on-site analysis, and in-situ monitoring. The advantages and disadvantages and application scope of each method were compared. The trend of future development was also proposed.


Asunto(s)
Monitoreo del Ambiente , Sulfuros , Sulfuros/química , Monitoreo del Ambiente/métodos , Espectrometría de Fluorescencia , Calidad del Agua
8.
Sci Total Environ ; 829: 154594, 2022 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-35307437

RESUMEN

Total dissolved sulfide (TDS) plays multiple important roles in the aquatic environments. However, the determination of trace levels of TDS in natural waters is challenging because TDS is vulnerable to oxidation and volatilization. In this study, a fully automated flow injection analysis spectrophotometric system, incorporating a hollow fiber membrane contactor (HFMC) and a long path length liquid waveguide capillary cell, was fabricated to facilitate the on-site measurement of trace TDS in natural waters. The HFMC was used for matrix separation and analyte preconcentration. The measurement was based on the reaction of sulfide and N,N-dimethyl-p-phenylenediamine in the presence of FeCl3 under acidic conditions to yield methylene blue (MB). The proposed method was highly sensitive, with detection and quantification limits of 0.57 and 1.90 nmol L-1, respectively. The linear working range was from 1.90 to 150 nmol L-1, with a correlation coefficient of 0.9995. The repeatability, expressed as the relative standard deviation, was less than 0.86% (n = 15) and the recoveries varied from 76.2 ± 0.1% to 103.9 ± 0.6% (n = 3) for spiked samples. This method was applied to conduct a field analysis of TDS in a reservoir, giving results aligned with those obtained using a standard MB method. This work demonstrates that the new method for determining TDS was effective for both laboratory analysis and on-site measurement.


Asunto(s)
Análisis de Inyección de Flujo , Sulfuros , Análisis de Inyección de Flujo/métodos , Azul de Metileno , Espectrofotometría/métodos , Sulfuros/análisis
9.
Sci Total Environ ; 800: 149517, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34391153

RESUMEN

High-resolution time-series concentrations (CTS) are very important for the investigation of the biogeochemical processes of trace metals in the aquatic environment. However, the acquisition of CTS of trace metals in water is still challenging because of the lack of suitable samplers. In this study, an osmotic sampler coupled with air segment injection and preservative addition was employed for time-series sampling of trace metals in surface waters. In the sampler, water sampling and preservative adding are both driven by osmotic pumps (OPs), while air segment injection is accomplished by a timer-controlled micro diaphragm pump. During deployment, the sampling OP continuously draws water through a filter and stores it in a narrow-bore coil. Simultaneously, a preservative OP slowly pushes 30% HNO3 (v/v) into the collected sample for in situ preservation. Periodically, the micro diaphragm pump injects air into the continuous water stream to divide it into water segments, enabling accurate time-stamping. After retrieval, the time-series samples were pumped out from the coil and re-collected to analyze the CTS of analytes. The sampler was deployed in river, reservoir, and marine waters for 26 h and one week to measure CTS of trace metals at time resolutions of 2 h and 12 h. Results showed that the recoveries of a preloaded standard mixture (1.0 µg/L) in all samplers ranged from 93.1% to 117.8%. The measured CTS of Cd, Co, Cr, Cu, Mn, and Ni in the waters only varied in small ranges. Accordingly, the measured CTS data from the sampler were consistent with the obtained concentrations from grab sampling. The relative percent differences between the measurements from two samplers were less than 37.4%. These results demonstrate the reliability and accuracy of the sampler for time-series sampling of the chosen trace metals in surface waters.


Asunto(s)
Oligoelementos , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Reproducibilidad de los Resultados , Ríos , Contaminantes Químicos del Agua/análisis
10.
Sci Total Environ ; 753: 142072, 2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-32891987

RESUMEN

Polyhalogenated carbazoles (PHCs) have been frequently detected in various environments and have gained increasing attention due to their dioxin-like toxicity. In this study, 28 surface sediments and three sediment cores were collected from the northern South China Sea (SCS) to investigate the spatial and temporal distribution trends of PHCs. The total concentrations of PHCs in the surface sediments ranged from 0.25 ng/g to 3.10 ng/g, with a median concentration of 1.50 ng/g. The composition profiles of PHCs in the surface sediments were dominated by 3,6-dichlorocarbazole (36-CCZ), 3,6-dibromocarbazole (36-BCZ), and 1,3,6,8-tetrabromocarbazole (1368-BCZ). The total organic carbon (TOC) based concentrations of 36-CCZ, 1-bromo-3,6-dichlorocarbazole, 1,3,6,8-tetrachlorocarbazole, and 1368-BCZ showed significant positive correlation with water depth (r = 0.58-0.88, p values < 0.01). On the contrary, the TOC based concentration of 2,3,6,7-tetrachlorocarbazole displayed a significant negative correlation with the water depth (r = -0.52, p < 0.01). However, no significant correlation was observed for 3-chlorocarbazole, 36-BCZ, and 1,3,6-tribromocarbazole (p values > 0.05). PHCs in sediment cores showed that congener profiles and concentrations of PHCs remained largely stable throughout the 1890s and 2010s. In addition, all the detected PHCs displayed a significant positive correlation with TOC content of the sediments. These unique spatial and temporal distribution patterns suggest that both terrigenous and natural marine sources contributed the observed PHCs in sediments of the northern SCS.

11.
Spectrochim Acta A Mol Biomol Spectrosc ; 248: 119162, 2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33221138

RESUMEN

In this study, we proposed a novel method for the determination of nanomolar dissolved sulfides, including H2S, HS-, and S2- (defined as S(-II)) in water by coupling the classical methylene blue (MB) method with surface-enhanced Raman spectroscopy (SERS) detection. Overall, the following analytical procedures were employed: i) precipitation of S(-II) as zinc sulfide, ii) centrifugation to collect zinc sulfide, iii) derivatization of S(-II) to MB by the reaction with N, N-dimethyl-p-phenylenediamine in the presence of FeCl3 under acidic conditions, and iv) SERS detection. Parameters affecting the derivatization and SERS detection were optimized. Under the optimized conditions, a linear range of 12.3 nmol/L-200 nmol/L for S(-II) was obtained with a correlation coefficient (R2) of 0.99. Limits of detection and quantification of the developed method were estimated to be 3.7 nmol/L and 12.3 nmol/L, respectively. In addition, the proposed method demonstrated excellent tolerance to coexisting substances, such as NO2-, NO3-, SO32-, and other common ions. The proposed method demonstrates immense promise for the determination of nanomolar S(-II) in surface waters and wastewater.

12.
Sci Total Environ ; 759: 143538, 2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33229095

RESUMEN

The analysis of time-series concentrations (CTS) is of great importance when investigating the biogeochemical processes of nutrients in aquatic environments. However, obtaining CTS of nutrients remains a challenge using current sampling techniques. In this study, a novel in situ sampler was constructed using reverse osmosis membrane (ROM) osmotic pumps (OP) (ROM-OP sampler), and was used to obtain the CTS of nutrients in surface waters. The sampler consisted of a sampling OP, sample storing coil, filter, bubble injection module, and preservative adding module. When deployed, the sampling OP continuously draws ambient water through the filter into the sample storing coil, while simultaneously the preservative adding module continuously delivers preservative (H2SO4 solution) into the water flow. The bubble injection module periodically injects air bubbles into the sample storing coil, to segment the sample and create time stamp indicators that allow the sample age to be defined. Upon retrieval, the sample segments in the coil are sequentially pumped out of the sample storing coil and transferred into different vials for further analysis. The sampler was applied to measure the CTS of various nutrients, including dissolved total nitrogen, dissolved total phosphorus, dissolved reactive phosphorus, and nitrate in a river over a 20 day period and in municipal sewage treatment plant effluent for a 36 h period. Results showed that the ROM-OP sampler successfully obtained CTS of nutrients, capturing nutrient variations at a high temporal resolution. This sampler is relatively low-cost (~USD 300), small in size, lightweight, robust and does not require an external power source, showing high promise as an effective and efficient tool for monitoring nutrient CTS in aquatic environments.

13.
Water Res ; 183: 116105, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32650298

RESUMEN

Although the ozonation of common antibiotics, such as ciprofloxacin (CIP), in water has been well studied, the influence of bromide that is present at high levels in seawater, is essentially unknown. In this study, we investigated the effect of bromide on the reaction kinetics, formation of transformation products (TPs), reaction pathways, and toxicity in the ozonation of CIP. Bromide significantly accelerated the transformation of CIP by ozone, likely due to the formation of reactive bromine species. Based on time-of-flight high-resolution mass spectrometry and suspect screening, a total of 26 TPs, including 13 previously unknown products, were identified in artificial seawater, while only 9 of them were found in pure water without bromide. The transformation of CIP in artificial seawater was found to involve four major processes: oxidation at the piperazinyl moiety with the addition of hydroxyl group(s) to the ring and ring cleavage, oxidation at the quinolone moiety, and bromination. In contrast, the ozonation of CIP in pure water occurred only at the piperazinyl moiety. In addition, bromide also enhanced the removal of toxicity towards Escherichia coli. This study suggests that careful consideration should be taken when using ozone to treat antibiotics contaminated water in the presence of bromide.


Asunto(s)
Ozono , Contaminantes Químicos del Agua , Purificación del Agua , Bromuros , Ciprofloxacina/análisis , Cinética , Oxidación-Reducción
14.
Bull Environ Contam Toxicol ; 103(4): 597-603, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31309234

RESUMEN

Coastal areas are influenced by anthropogenic input of a variety of organic pollutants, among which polybrominated diphenyl ethers (PBDEs) represent an important group. In the present study, we investigated the contamination status of PBDEs in surface sediment from two economically important Bays in Southeast China, Sanmen Bay (SMB; n = 29) and Xiamen Bay (XMB; n = 10). Concentrations of ∑PBDEs ranged from 2.2 to 78.5 ng/g dw (median 5.7 ng/g dw) in SMB and 7.9-276.0 ng/g dw (median 43.5 ng/g dw) in XMB, respectively. A nearshore-offshore decreasing trend was observed for both ∑PBDEs and BDE-209 concentrations, indicating strong urban influences. Although the current levels would not produce any significant impact on benthos and aquatic ecosystems of the studied regions, continuous monitoring is needed to understand the temporal trends of contamination in the important coastal waters and whether sediment-associated PBDEs constitute a potential source to aquatic ecosystems.


Asunto(s)
Monitoreo del Ambiente , Éteres Difenilos Halogenados/análisis , Contaminantes Químicos del Agua/análisis , Bahías , China , Ecosistema , Sedimentos Geológicos/química
15.
J Hazard Mater ; 378: 120763, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31207484

RESUMEN

Carbamazepine (CAB) is a commonly detected pharmaceutical in the surface waters. In the present study, we evaluated the effect of humic acid (HA) and nitrogen species on the toxicity of CAB in a typical diatom Navicula sp., and its metabolic fate. The Navicula sp. showed a high sensitivity to CAB (72 h EC50 = 0.179 mg L-1). The addition of HA (< 30 mg L-1) and ammonium could promote the growth of Navicula sp. during 6 d of exposure to CAB. CAB underwent rapid dissipation in the algal culture. The degradation of CAB in Navicula sp. cultures was significantly increased by the addition of HA and higher HA contents caused more degradation of CAB. Degradation and accumulation of CAB in Navicula sp. were significantly inhibited by ammonium. Five metabolites were found and possible degradation pathways of CAB in the algal cell were proposed. Methoxylation, demethylation, glucuronidation and hydroxylation contributed to CAB transformation in the algal cell.


Asunto(s)
Biodegradación Ambiental , Carbamazepina/química , Diatomeas/efectos de los fármacos , Diatomeas/metabolismo , Sustancias Húmicas , Nitrógeno/química , Compuestos de Amonio/química , Hidroxilación , Cinética , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos
16.
Environ Int ; 129: 194-207, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31129496

RESUMEN

Pyrethroids are a class of commonly used insecticides and are ubiquitous in the aquatic environment in various regions. Aquatic toxicity of pyrethroids was often overestimated when using conventional bulk chemical concentrations because of their strong hydrophobicity. Over the last two decades, bioavailability has been recognized and applied to refine the assessment of ecotoxicological effects of pyrethroids. This review focuses on recent advances in the bioavailability of pyrethroids, specifically in the aquatic environment. We summarize the development of passive sampling and Tenax extraction methods for assessing the bioavailability of pyrethroids. Factors affecting the bioavailability of pyrethroids, including physicochemical properties of pyrethroids, and quality and quantity of organic matter, were overviewed. Various applications of bioavailability on the assessment of bioaccumulation and acute toxicity of pyrethroids were also discussed. The final section of this review highlights future directions of research, including development of standardized protocols for measurement of bioavailability, establishment of bioavailability-based toxicity benchmarks and water/sediment quality criteria, and incorporation of bioavailability into future risk assessment and management actions.


Asunto(s)
Insecticidas/química , Piretrinas/química , Disponibilidad Biológica , Interacciones Hidrofóbicas e Hidrofílicas , Insecticidas/metabolismo , Piretrinas/metabolismo
17.
Ecotoxicol Environ Saf ; 179: 96-103, 2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31026755

RESUMEN

Chloroperoxidase (CPO) is a hybrid of two different families of enzymes, peroxidases and P450s. However, it is poorly understood on CPO's multiple catalytic functions. Herein, phenol was selected as a model substrate to investigate the multiple catalytic roles of CPO. Results showed that phenol was readily transformed into a variety of brominated organic compounds (BOCs) via the CPO-mediated oxidative process. A total of 16 BOCs were identified using gas and liquid chromatography coupled with mass spectrometry. Possible reaction pathways could be attributable to four CPO-mediated processes, including bromination, radical coupling, intramolecular cyclization and debromination. Higher bromide concentrations and lower pH conditions both facilitated the formation of brominated products. While a higher bromination capacity was observed in pH 3.0 solutions, CPO-mediated radical couplings were more favorable at pH 5.0 and 6.0. Although CPO might catalyze chlorination when chloride and bromide coexisted in the solution, BOCs were the dominant products of CPO-mediated phenol oxidation. Results of this study suggest that various catalytic roles of CPO may contribute to the biotic formation of BOCs in the natural environment.


Asunto(s)
Bromuros/química , Cloruro Peroxidasa/química , Hidrocarburos Bromados/química , Fenol/química , Catálisis , Cromatografía Liquida , Halogenación , Estructura Molecular , Oxidación-Reducción , Espectrometría de Masas en Tándem
18.
Talanta ; 199: 567-572, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-30952299

RESUMEN

The purpose of this study was to develop and validate a sensitive method for the determination of ultra trace levels of reactive bromine species (RBS) in water. To derivatized RBS, water samples were transferred into vials pre-fortified with an appropriate dose of derivative reagent 3,5-dimethyl-1H-pyrazole (DMPZ). RBS in water samples could be rapidly and stoichiometrically (1:1) derivatized to 4-bromo-3,5-dimethyl-1H-pyrazole, which was directly analyzed on an ultra performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry. Parameters influencing the derivatization efficiency including reaction time, temperature, DMPZ dose, and pH were optimized to be: a molar concentration ratio of DMPZ to RBS ≥ 100:1, pH 5-10, and reaction for 10 min at room temperature. In addition, near 100% of RBS was recovered when using water with salinity of 0-55 as the spiking matrices, suggesting that salinity had negligible effect on the derivatization efficiency. Under the optimized conditions, interday and intraday analyses showed that the recoveries of RBS ranged from 88.0% to 109.8% for samples spiked with 18.0-540 pmol L-1 of RBS, with relative standard deviations less than 3.7%. The method limit of detection and limit of quantification for RBS were 5.8 pmol L-1 and 18.0 pmol L-1, respectively. Compared with currently available methods, our method greatly improved the analytical sensitivity by lowering the limit of detection for more than 100 times. The developed method displayed high reliability and reproducibility in the analysis of ultra trace levels of RBS in seawater and other real fresh water samples.

19.
Environ Sci Technol ; 53(5): 2579-2585, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30712344

RESUMEN

Active samplers for ambient monitoring of trace contaminants in surface water are highly desirable, but their use is often constrained by power supply. Here, we proposed a novel solution by coupling an improved osmotic pump (OP) with a solid-phase extraction (SPE) cartridge to construct a power-free active sampler for organic contaminants. The OP simply consisted of two cylindrical chambers separated by a reverse osmosis membrane. We, for the first time, added ion-exchange resins into the OP inlet chamber and successfully constructed OPs with a smooth and constant flow. In the OP-SPE sampler, water was continuously drawn through the SPE cartridge at a constant flow, and time-weighted average concentration over the sampling course may be easily calculated from the amount of target analytes retained on the SPE cartridge and water collected in the sampler. The OP-SPE samplers were deployed in a river to detect herbicides, and the measured concentrations were largely in agreement with the average of 11 daily spot samples. Given that a wide range of SPE cartridges are available for different classes of organic contaminants, this approach is versatile and may find widespread applications for in situ sampling of surface water under different conditions, including poorly accessible locations.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Ósmosis , Extracción en Fase Sólida , Agua
20.
Ecotoxicol Environ Saf ; 170: 148-155, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30529613

RESUMEN

The purpose of this study was to develop a novel and sensitive method for the analysis of carbazole and polyhalogenated carbazoles (PHCs) in sediment using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Briefly, 5.0 g of freeze-dried sediment samples were extracted with dichloromethane using pressurized liquid extraction (PLE). The extract was purified with Florisil solid phase extraction cartridge, filtered through 0.22 µm polytetrafluoroethylene filter using a glass syringe, followed by LC-MS/MS analysis. Besides parameters for LC-MS/MS analysis, sample preparation procedures (including solvents for PLE, sorbents for cleanup, and filters for sample filtration) were optimized. The limits of detection and limits of quantification of target compounds were in the ranges of 3.0 × 10-3 to 0.22 ng g-1 dry weight (d.w.) and 1.0 × 10-2 to 0.75 ng g-1 d.w., respectively. The recoveries of target compounds in the spiked sediments at 2.0 ng g-1 d.w. and 10 ng g-1 d.w. were 64.8-91.8% and 70.9-124.7%, respectively, with relative standard deviations being less than 13.2%. Except that 36-BCZ had positive matrix effects of 63.3%, the sediment matrices generally displayed low or medium negative matrix effects on the other target compounds during LC-MS/MS analysis. The developed method was applied in the analysis of carbazoles and PHCs in sediment samples from Jiulong River, Fujian, China and all the target compounds were detected in the samples.


Asunto(s)
Carbazoles/análisis , Cromatografía Liquida , Sedimentos Geológicos/química , Espectrometría de Masas en Tándem , China , Límite de Detección , Silicatos de Magnesio/química , Cloruro de Metileno/química , Politetrafluoroetileno/análisis , Reproducibilidad de los Resultados , Ríos/química , Extracción en Fase Sólida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...